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Telemetry systems supported by the DSN employ coherent detection of a
bi-phase phase-shift keyed (PSK) waveform. The coherent reference for the
detector is supplied by a bandpass limiter/phase-locked loop. Phase noise in this
coherent reference is often a critical factor in establishing link performance.
Lindsey has analyzed the performance of the DSN receivers under the extreme
assumptions that (a, high-rate) the phase error of the coherent reference is constant
over the symbol interval, and that (b, low-rate) the phase error of the coherent
reference varies rapidly over the symbol interval. Blake/Lindsey and Taus-
worthe, subsequently developed techniques to approximate the DSN receiver
performance between these extremes. Under close examination, however, it
becomes apparent that with typical DSN parameters, the approximations used by
Blake and Lindsey become suspect above 15-30 bits/s, and hence do not validly
cover many of the interesting data rates. The interpolation proposed by Tausworthe
depends upon approximating the log of the error probability by the first few terms
of a Taylor series in the variational part of the decision variable. Again, there must
be some ranges of defining parameters (not necessarily of practical interest) where
his approximation becomes invalid. It is the intent of this article to develop a
refined approximation to the performance of the DSN receivers with a (hopefully)
wider validity range than previous techniques.

l. Introduction

Telemetry systems supported by the DSN employ co-
herent detection of a bi-phase PSK waveform. The coher-
ent reference for the detector is supplied by a bandpass
limiter /phase-locked loop. Phase noise in this coherent
reference is often a critical factor in establishing link
performance. Lindsey (Ref. 1) has analyzed the perform-
ance of the DSN receivers under the extreme assump-
tions that (a, high-rate) the phase error of the coherent
reference is constant over the symbol interval, and that
(b, low rate) the phase error of the coherent reference
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varies rapidly over the symbol interval. Blake and Lindsey
(Ref. 2) and Tausworthe (Ref. 3) subsequently developed
techniques to approximate the DSN receiver performance
between these extremes. Under close examination, how-
ever, it becomes apparent that with typical DSN param-
eters, the approximations used by Blake and Lindsey
(Ref. 2) become suspect above 15-30 bits/s, and hence
do not validly cover many of the interesting data rates.
The interpolation proposed by Tausworthe depends upon
approximating the log of the error probability by the first
few terms of a Taylor series in the variational part of the
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decision variable. Again, there must be some ranges of
defining parameters (not necessarily of practical interest)
where his approximation becomes invalid. It is the intent
of this article to develop a refined approximation to the
performance of the DSN receivers with a (hopefully)
wider validity range than previous techniques.

The system parameter which characterizes the high-,
medium- and low-rate situations is the normalized data
rate defined as the ratio of the data rate &8 to the two-
sided phase-locked loop bandwidth W, at its operating
point. Most of the significant performance variation occurs
in the range of 8 from 0.5 to 10. For the DSN receiver with
its nominal design point loop bandwidth of 12 Hz, W,
varies between 20 and 60 Hz at typical operating points,
so the medium-rate approximate analysis is applicable to
all data rates below about 500 bits/s.

Il. System Model

The system in which we are interested consists of a
limiter-controlled phase-locked loop which tracks the
carrier of the signal received from a spacecraft, followed
by an integrate-and-dump correlation detector using the
output of the phase-locked-loop for the coherent reference.
For uncoded telemetry, the decision statistics emitted by
the correlation detector can be represented by

T,
+n(f)]dt (1a)

D, =+ / " 0o (odt + (8) * [Ame 005 (wct + ¢ (1)
t

_ Amt-% /, " cos(B(t) — pe(B)dt N, (Ib)

This expression involves the implicit assumption that n(¢)
is independent of the phase 3(t), and neglects losses due
to bit timing errors, subcarrier synchronization errors,
waveform distortions, etc. The modulation term m, is 1.
For coded telemetry, m; would be replaced in Eq. (1b)
by the appropriate cross-correlation between received and
tentative reference code words.

The critical feature of Eq. (1b) is its dependence upon
the reference phase error ¢. (£) =@ (t) — ¢. (£), which is a
band-limited low-pass random process whose bandwidth
is the phase-locked-loop bandwidth. For a first-order
tracking loop, ¢, has autocorrelation function

Ry, (r) = oj, exp (—2Wy |7]) (2)

Furthermore, if the signal-to-noise ratio in the operating
loop bandwidth p,, is large, ¢.(¢) is essentially Gaussian
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with o3, = 1/p.. For moderate p, (> 3), quasi-linear loop
theory shows that ¢, (¢) is well approximated by a Gaus-
sian process with ¢}, = exp (¢3,/2)/pr. In the following,
we will use p;, to denote an equivalent quasi-linear loop
signal-to-noise ratio (SNR), so that o}, = 1/p;. For the
high-rate performance model, W, T < < 1, ¢. (£} is con-
stant during the integration period, and the probability
distribution of D, is well known (Ref. 1).

For the low-to-medium rate performance model, Blake
and Lindsey propose the approximation

1
cos¢e>1—§</>l'§
3
1 1 /[*
Dt~Am[{l——9—'—,1‘:/’ (i)?»(t)dt}-'_Nf

The parameter

x:%f o (1) dt

has a density function g (x) which is well approximated by
(Refs. 2 and 4)

1/2
8 = (2_6) (pix) /" exp {_ g [prx—2+ 1/p§,x]}

(4)
The parameter AW, T = 1/8. As noted by Ref. 2, the
approximation is very close for 8 > 5, but becomes invalid
for g < 1. The density g (x) has its maximum at

, 3\ /3
ix=[1 () |- (39)

and a zero at the origin.

Let y = px. The first few moments of y can be readily
calculated to be

Lyt =1yt = 1+ B8)/B g = (3436 + B/

<

From this, the variance of y can be seen to be V{y} = 1/8.
However, for very large 8, small B, the distribution of x
is properly Chi-square with one degree of freedom, and
thus the variance of y should be 2. Clearly for small g,
the true and approximate distributions are rapidly diver-
gent. Suppose we can find some function B( ) such that
letting 8" =B (8) forces equality of the second moments
of g (x) and the true density for x. Then clearly
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At this value, y* = 19, as contrasted to the true value
for a Chi-square (1) of 15. While g (x, 8") is a closer approx-
imation to the true density than g(x, ), its third (and
higher) moments remain in error. Tausworthe (Ref. 3) has
calculated the second central moment for

T

1
Z:—i; , COSqSe('r)d'r

for use as an interpolation formula. We may use his cal-
culation directly as B ( ):

B =B(8)=1/{8 — (8°/4) (1 — %)} (5)

This calculation is identical to the second central moment
calculated for

177,
’“:7./0 o2 (6) dt

There are a number of other plausible choices for an
approximation to the density function for x, most of which
fit reasonably at some values of 8, and do not fit for others.
The preferred choice among those considered is

W) =\ o (VED e (—ay —ba) (@

where y = p7, x. This density is fully defined by the param-
eters a and b, which are determined by the requirement
that the first two moments of y match those of the true
distribution:

y=Ly*=1+1/B(3) (7
The parameters @ and b are thus determined:

aZ%Q(1+V1+4/B(8))

b=a—-1+1/4a,Vab=a—1/2

(8)

The third moment of h (y) is readily calculated to be

— 3 3 5
3 — T =
p=1+ 2a + 2a? + 8a? )

where a is given by Eq. (8).

This should be compared against the third moment of
g(x, 8’), which is

y3. =1+ 3/B(8) + 3/B(5) (10)

and against the third moment of the actual distribution.
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The nth order moments of the actual distribution can
be calculated for small n by reference to the definition in
terms of an exponential-memory Gaussian process:

v="7 [ et/ ()

By definition,

7 ([ 200700000

:_TL//T {1+ Gexp (—4W, |t — s|)

+8exp [—2W, (|t — 5| + |s — z|
+ |z —¢|)]}dsdtdz
12 1
L A —
Y K
48 2
+—7|:l+e"7———(1‘e’7)] (12)
n n
where
Figure 1 shows a comparison of the actual third moment
of y (line 1), the third moment of g (x, 8) (line 2), and the
third moment of h (y) (line 4). On this basis, h (y) appears

to provide the best approximation over the entire range
of 8.

I1l. Detector Performance

For uncoded communications, the error probability is
simply the probability that m, * D, is negative. Assuming
that N, and cos (¢, (t)) are independent, this is equal to
the expected value (over the distribution of x) of the prob-
ability that m,+D, is negative conditioned on x:

Pe:/wa(x)Pr{l-%<—N,/A}dx (13)

And if R denotes the bit signal-to-noise ratio (R =
Eb/No = S . T/No),

P, = / " £ (x) erfic {v“zﬁ<1 . g—)} de (14)

This probability is shown in Fig. 2 for several different
models, for 8 in the range 0.1 to 10. The “~+” on this figure
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corresponds to the high-rate model calculation (Ref. 1).
Line 1 was calculated using Tausworthe’s interpolation
formula, line 2 using g(x, 8’), line 3 using g(x, B), and
line 4 using h (x). Both the h(x) calculations and Taus-
worthe’s interpolation agree with the high-rate model for
large 8.

We are now faced with interpreting and evaluating
these models. For 8 above about 0.3, the performance for
g (x, B) is rapidly diverging from g(x, 8’) as a result of
the second-moment misfit. Below this point, there is little
difference between these and the low-rate model results.
Ergo, there is little reason to use the unmodified g (x, B)
model to interpolate for medium-rate performance.

In Fig. 1, the third moments of g(x, 8’) and h(x) are
respectively above and below the actual third moment.
If we believe that, in the presence of identical second
moments, the value of the third moment is an indication
of the weight of the distribution at large values, or values
which tend to cause errors, then we should expect that
the actual error probability would fall between these two
models. In Fig. 2, the Tausworthe interpolation falls out-
side this interval for almost all values of §, implying that
we should reject the hypothesis that Tausworthe’s inter-
polator is accurate at the intermediate data rates. Further
evidence to that effect can be obtained by interpreting
the Tausworthe interpolation in terms of a density func-
tion on £, the most straightforward choice being the inter-
polation between the known densities at the high-rate and
low-rate extremes. The second and third moments of this

fabricated density differ significantly from the moments
of the actual distribution. The most reasonable candidate
for an accurate approximation would appear to be calcu-
lations utilizing h (x).

Figures 3, 4, and 5 compare these models for several
other values of carrier loop SNR (p..), and bit SNR (R). In
the vicinity of 10~ and higher error probability, typical of
video missions, the calculated results differ little, and it is
most reasonable to utilize the Tausworthe interpolation
formula since it is simplest to compute. At lower error
probability values, the models diverge significantly, and
while these low error probabilities may not be interesting
per se, for uncoded systems this divergence is interesting
in that we may expect a similar divergence for coded
systems at error probabilities which are of interest to deep
space missions.

IV. Summary

This article has compared several methods of calculat-
ing noisy reference telemetry performance at intermediate
data rates, i.e., where the data rate to loop bandwidth ratio
is on the order of 0.1 to 10. In general, at bit error probabil-
ities of about 103, which have been typical of uncoded
video missions, the interpolation formula proposed by
Tausworthe (Ref. 3) provides acceptable answers. At low
bit error probabilities, or for coded systems, evidence pre-
sented herein implies that the noisy reference calculation
based upon the density function h (y) in Egs. (6) and (8)
provides more accurate answers than previous techniques.
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Fig. 1. Third moments of distribution
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Fig. 2. Calculated error probability vs normalized data rate
for loop SNR = 10, bit SNR = 15
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Fig. 3. Calculated error probability vs normalized data rate
for loop SNR = 4, bit SNR = 7 and 15
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Fig. 4. Calculated error probability vs normalized data rate
for loop SNR = 7, bit SNR = 3, 7, and 15
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Fig. 5. Calculated error probability vs normalized data rate
for loop SNR = 10, bit SNR — 7 and 15

JPL TECHNICAL REPORT 32-1526, VOL. XVii



